Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.050
Filtrar
1.
Heliyon ; 10(7): e29327, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623203

RESUMO

Pre-harvest sugarcane burning persists in many countries though there are policies prohibiting the practice. As problems related to sugarcane harvesting are complex, a thorough understanding of the problems for policy formulation is required. The objective of this study was to reanalyze or reframe problems of sugarcane harvesting and pre-harvest sugarcane burning. Concepts of wicked problems, practical reasoning and policy reframing were applied. The study used a participatory modeling approach to illustrate the case of Thailand. Wickedness was shown by complexity and uncertainties of factors intertwining with values related to adoption of harvesting methods; green mechanical, green manual and burnt manual. As timeliness of harvest was the top priority, the burnt method was considered more efficient. It was easier, faster, cheaper and more suitable under unfavorable circumstances for the green methods. The policy to reduce burnt-harvested sugarcane was not so effective and also led to the undesired 'green but unclean' method. To frame harvesting problems based on emissions of fine particulates (PM2.5) from sugarcane burning was not a good choice. Incomplete problem sense-making and poor problem frame were indicated. Most farmers were unable to associate sugarcane burning with environmental problems of PM2.5 (and also global warming/climate change) and livelihood impacts. Nevertheless, a larger concern over climate variations was perceived by a majority of farmers. Farmers who adapted relied primarily on green harvesting and the use of residues as trash blankets. Through policy reframing, inefficient green harvesting was seen as a better frame. The new frame enabled farmers linking agricultural practices to sustainability of environment, productivity and livelihoods in the context of climate change. Using participatory modeling for reframing policy problems in general and wicked problems in particular was shown to be powerful and contributing to originality.

2.
Plant Physiol Biochem ; 210: 108629, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38626657

RESUMO

The timing of floral transition is essential for reproductive success in flowering plants. In sugarcane, flowering time affects the production of sugar and biomass. Although the function of the crucial floral pathway integrators, FLOWERING LOCUS T (FT), in sugarcane, has been uncovered, the proteins responsible for FT export and the underlying mechanism remain unexplored. In this study, we identified a member of the multiple C2 domain and transmembrane region proteins (MCTPs) family in sugarcane, FT-interacting protein 1 (ScFTIP1), which was localized to the endoplasmic reticulum. Ectopic expression of ScFTIP1 in the Arabidopsis mutant ftip1-1 rescued the late-flowering phenotype. ScFTIP1 interacted with AtFT in vitro and in vivo assays. Additionally, ScFTIP1 interacted with ScFT1 and the floral inducer ScFT3. Furthermore, we found that the NAC member, ScNAC23, could directly bind to the ScFTIP1 promoter and negatively regulate its transcription. Overall, our findings revealed the function of ScFTIP1 and proposed a potential mechanism underlying flowering regulation in sugarcane.

3.
J Sci Food Agric ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629581

RESUMO

BACKGROUND: Sugarcane juice, which has a short shelf life, is a popular thirst-quenching and rejuvenating beverage worldwide. The limited shelf life is due to changes in polyphenol oxidase (PPO) activity, total plate count (TPC) and color attributes (L*, a* and b* values). We hypothesized that chemical kinetics and thermodynamics of blanched sugarcane cane juice causing alterations in PPO, TPC and L, a*, b* values shall address the challenges of sugarcane juice preservation. RESULT: Sugarcane billets were blanched at variable time-temperature combinations in the range of 0-20 min and 70-90°C. Reaction rates increased with increasing temperature; PPO activity, TPC and colour followed first order kinetics. PPO activity had an activation energy (Ea) of 81 kJ mol-1. The half time (t ½) values dropped from 16.5 min to 3.47 min and decimal reduction time (D-values) dropped from 54.83 min to 11.52 min. Thus reactions were temperature-sensitive. Thermodynamic studies indicated an endothermic (positive enthalpy values, ΔH > 0; 78.10 kJmole-1) and reversible process (negative entropy values ΔS < 0; -0.044 kJmole-1 K-1). Michaelis - Menten constant (Km) and maximum velocity (Vmax) of PPO activity were determined by adding variable lemon juice concentrations in sugarcane juice. As Km values increased (from 5.53 mM to 15.81 mM) and Vmax values decreased (from 666.67 to 384.61 UmL-1), Lineweaver Burk Plot suggested decreased PPO affinity of sugarcane juice. CONCLUSION: The results indicated that studies on chemical kinetics and thermodynamics (PPO, TPC and L, a*, b* values) of blanched sugarcane cane juice shall mitigate challenges of sugarcane juice preservation. This article is protected by copyright. All rights reserved.

4.
Heliyon ; 10(7): e28259, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571610

RESUMO

The sustainability of the sugarcane agro-industry supply chain plays a crucial role in providing economic benefits, minimizing social and environmental impacts, and optimizing resource utilization. This research aims to analyze the sustainability performance of the sugarcane agro-industry supply chain using multi-criteria assessment and formulate strategies for sustainability improvement. The study proposes a multi-criteria assessment model with twenty-eight indicators and four dimensions of sustainability: economic, social, environmental, and resources, which were developed based on previous research. The fuzzy inference system (FIS) and multi-dimensional scaling (MDS) methods were utilized to analyze the multi-criteria indicators of sustainability performance in each dimension and overall supply chain. The Adaptive Neuro Fuzzy Inference System (ANFIS) model was used to aggregate multi-dimension sustainability to achieve overall sustainability performance. A fuzzy cognitive map (FCM) framework was developed to formulate strategies for improving the sustainability performance of the supply chain. The research was verified at two sugar mill locations in Java Island, Indonesia. The FIS and MDS models successfully analyzed the sustainability performance of the two sugar agro-industries, showing an average value of "quite sustainable". The overall sustainability performance using the ANFIS model for mill A and B were 57.2 and 61.9, respectively. Series of FGDs combined with the FCM model successfully formulated five clusters of strategies as initiatives in improving the sustainability performance, namely raw material provision, harvesting and post-harvest activities, production process optimization, IT-based technology implementation, and institutional aspects. This present work seeks to contributes to the development of multi-criteria of sustainability performance for the food industry's supply chain. It also proposes a comprehensive framework for analyzing and improving sustainable supply chain performance under uncertainty using a combination of conventional and fuzzy assessment modeling approach. A practical initiative strategy in sustainability improvement is revealed for the sugarcane agroindustry's supply chain.

5.
J Food Sci ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563092

RESUMO

Although the benefits of sugarcane polyphenol (SP) are well documented, its function in preventing photoaging has not yet been investigated. This study aimed to investigate the protective effects of SP in preventing ultraviolet (UV)-B-induced skin photoaging in Balb/c mice, as well as the underlying mechanism. Chlorogenic acid was determined to be the primary component of SP by using high-performance liquid chromatography-mass spectrometry. SP and chlorogenic acid were orally administrated to mice for 56 days, and UV-B radiation exposure was administered 14 days after SP and chlorogenic acid administration and lasted 42 days to cause photoaging. SP and chlorogenic acid administrations significantly alleviated the UV-B-induced mouse skin photoaging, as indicated by the decrease in epidermal thickness, increase in the collagen (COL) volume fraction, and elevation in type 1 and type 3 COL contents. Notably, both SP and chlorogenic acid effectively reversed the overexpression of matrix metalloproteinase induced by UV-B exposure in the mouse skin. Furthermore, SP and chlorogenic acid reduced the expression of receptor for advanced glycosylation end products in the mice; amplified the activities of antioxidant enzymes superoxide dismutase and catalase; reduced malondialdehyde levels; and decreased inflammatory cytokines interleukin 1ß, interleukin 6, and tumor necrosis factor α levels. SP could be a prospective dietary supplement for anti-photoaging applications due to its antioxidant, anti-inflammatory, and anti-glycosylation attributes, and chlorogenic acid might play a major role in these effects. PRACTICAL APPLICATION: This study can provide a scientific basis for the practical application of sugarcane polyphenols. We expect that sugarcane polyphenols can be used in food and beverage products to provide flavor while combating skin aging.

6.
Front Microbiol ; 15: 1379688, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567071

RESUMO

Caffeic acid (CA) is a phenolic acid compound widely used in pharmaceutical and food applications. However, the efficient synthesis of CA is usually limited by the resources of individual microbial platforms. Here, a cross-kingdom microbial consortium was developed to synthesize CA from sugarcane bagasse hydrolysate using Escherichia coli and Candida glycerinogenes as chassis. In the upstream E. coli module, shikimate accumulation was improved by intensifying the shikimate synthesis pathway and blocking shikimate metabolism to provide precursors for the downstream CA synthesis module. In the downstream C. glycerinogenes module, conversion of p-coumaric acid to CA was improved by increasing the supply of the cytoplasmic cofactor FAD(H2). Further, overexpression of ABC transporter-related genes promoted efflux of CA and enhanced strain resistance to CA, significantly increasing CA titer from 103.8 mg/L to 346.5 mg/L. Subsequently, optimization of the inoculation ratio of strains SA-Ec4 and CA-Cg27 in this cross-kingdom microbial consortium resulted in an increase in CA titer to 871.9 mg/L, which was 151.6% higher compared to the monoculture strain CA-Cg27. Ultimately, 2311.6 and 1943.2 mg/L of CA were obtained by optimization of the co-culture system in a 5 L bioreactor using mixed sugar and sugarcane bagasse hydrolysate, respectively, with 17.2-fold and 14.6-fold enhancement compared to the starting strain. The cross-kingdom microbial consortium developed in this study provides a reference for the production of other aromatic compounds from inexpensive raw materials.

7.
Heliyon ; 10(7): e28531, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586380

RESUMO

Improvement of sugarcane is hampered due to its narrow genetic base, and the difficulty in synchronizing flowering further hinders the exploitation of the genetic potential of available germplasm resources. Therefore, the continuous evaluation and optimization of flowering control and induction techniques are vital for sugarcane improvement. In view of this, the review was conducted to investigate the current understanding of photoperiodic and lighting treatment effects on sugarcane flowering and its genetic regulation. Photoperiod facilities have made a significant contribution to flowering control in sugarcane; however, inductive photoperiods are still unknown for some genotypes, and some intended crosses are still impossible to produce because of unresponsive varieties. The effectiveness of lower red/far-red ratios in promoting sugarcane flowering has been widely understood. Furthermore, there is vast potential for utilizing blue, red, and far-red light wavelengths in the flowering control of sugarcane. In this context, light-emitting diodes (LEDs) remain efficient sources of light. Therefore, the combined use of photoperiod regimes with different light wavelengths and optimization of such treatment combinations might help to control and induce flowering in sugarcane parental clones. In sugarcane, FLOWERING LOCUS T (ScFT) orthologues from ScFT1 to ScFT13 have been identified, and interestingly, ScFT3 has evidently been identified as a floral inducer in sugarcane. However, independent assessments of different FT-like gene family members are recommended to comprehensively understand their role in the regulation of flowering. Similarly, we believe this review provides substantial information that is vital for the manipulation of flowering and exploitation of germplasm resources in sugarcane breeding.

8.
Sci Rep ; 14(1): 8239, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589571

RESUMO

The DSSAT CANEGRO model was calibrated and verified using field experimental data from five Tamil Nadu Agroclimatic Zones (1981-2022). The genetic coefficients of the sugarcane cultivar (CO-86032) were calculated. R2 obtained between measured and simulated stalk fresh mass was 0.9 with the nRMSE (0.01) and RMSE (1.6) and R2 between measured and simulated sucrose mass was 0.9 with the nRMSE (0.16) and RMSE (1.2). For yield R2 obtained between measured and simulated was 0.9 with the nRMSE (0.01) and RMSE (1.6). As a result, the CANEGRO model may be used to mimic the phenology and yield features of the sugarcane cultivar in Tamil Nadu's Agro Climatic Zones. Temperature increases in Agro Climatic Zones resulted in varying yield reductions, with 2 °C increases causing a 3% loss, 3 °C increases 5%, and 4 °C increases 9%. The Water Requirement rose throughout all of the ACZ due to the high temperature, but to differing degrees. A 2 °C increase often results in an average 4% increase in the WR. 3 °C rise in temperature increased WR to 9% and WR rose by 13% when the temperature was raised by 4 °C.

9.
Plants (Basel) ; 13(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38592870

RESUMO

Sugarcane (Saccharum spp.), a major cash crop that is an important source of sugar and bioethanol, is strongly influenced by the impacts of biotic and abiotic stresses. The intricate polyploid and aneuploid genome of sugarcane has shown various limits for conventional breeding strategies. Nonetheless, biotechnological engineering currently offers the best chance of introducing commercially significant agronomic features. In this study, an efficient Agrobacterium-mediated transformation system that uses the herbicide-resistant CP4-EPSPS gene as a selection marker was developed. Notably, all of the plants that were identified by PCR as transformants showed significant herbicide resistance. Additionally, this transformation protocol also highlighted: (i) the high yield of transgenic lines from calli (each gram of calli generated six transgenic lines); (ii) improved selection; and (iii) a higher transformation efficiency. This protocol provides a reliable tool for a routine procedure for the generation of resilient sugarcane plants.

10.
Heliyon ; 10(7): e28750, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596061

RESUMO

The utilization of a novel (systemic) biofertilizer containing Pseudomonas fluorescens, Azospirillum brasilense, and Bacillus subtilis and possessing the technology to facilitate the entry of bacteria through the stomata, was evaluated at three localities in Mexico (Potrero Nuevo, Veracruz; Ameca, Jalisco; and Champotón, Campeche) in two sugarcane varieties (NCO-310 and Mex 57-473) at different time scales. Inoculation of the systemic biofertilizer was imposed over the local agricultural management of the sugarcane; chemical fertilization of the experimental parcels at Potrero Nuevo was done using 70-20-20 and 120-80-80 at Ameca and Champotón. Three doses of the biofertilizer per hectare were applied during the annual productive cycle of sugarcane at each site; one year at Potrero Nuevo and Champotón; and six years at Ameca. The annual sugarcane yield was evaluated at each site. Additionally, sugar quality (°Brix or sucrose content) was evaluated at the three localities, while different variables of stalk performance were also measured at Ameca and Champotón. Our data provide evidence that this systemic biofertilizer consistently and reliably increased the sugarcane yield at all localities during the time of evaluation, ranging from 73.7 tons ha-1 at Potrero Nuevo (2.5 times increase; P < 0.05) and 77.7 tons ha-1 at Ameca (1.9 times increase; P < 0.05) to 23.8 tons ha-1 at Champotón (1.4 times increase; P < 0.05). This increase in sugarcane biomass was related to increased tillering rather than increased stalk height or diameter. This novel biological product improved the sugarcane quality in terms of °Brix (P < 0.05, 2.6° difference) and sucrose content (P < 0.5, 0.7% difference).

11.
Artigo em Inglês | MEDLINE | ID: mdl-38639902

RESUMO

This work has focused on the co-pyrolysis of sugarcane waste (SW) with polyethylene terephthalate (PET) to gain insight on its thermal decomposition, product distribution, kinetics, and synergistic effect. SW and PET were blended at different ratios (100:0, 80:20, 60:40, 40:60, and 0:100), and the Coats-Redfern method was used to determine the kinetics parameters. To ascertain the synergistic effect between SW and PET, product yields and composition of chemicals were compared with the synergistic effect of the individual components of pyrolysis. The bio-oil yield was significant at 60% of PET, with a difference of 19.41 wt% compared to the theoretical value. The synergistic impact of SW:PET on ester formation and acid compound inhibition was the most dominant at the 60:40 ratio. The kinetics analysis revealed that the diffusion mechanism, power law, and order of reactions were the most probable reaction models that can explain the pyrolysis of SW, and PET, and their blends. The resultant co-pyrolysis oil contained slightly larger hydrogen and carbon contents with low oxygen, and sulphur, and nitrogen contents, which improved the quality of the bio-oil. The results of this work could be used as a guide in selecting proper reaction conditions with optimal synergy during the co-pyrolysis process.

12.
Front Plant Sci ; 15: 1369416, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601306

RESUMO

Under changing climatic scenarios, grassland conservation and development have become imperative to impart functional sustainability to their ecosystem services. These goals could be effectively and efficiently achieved with targeted genetic improvement of native grass species. To the best of our literature search, very scant research findings are available pertaining to gene editing of non-cultivated grass species (switch grass, wild sugarcane, Prairie cordgrass, Bermuda grass, Chinese silver grass, etc.) prevalent in natural and semi-natural grasslands. Thus, to explore this novel research aspect, this study purposes that gene editing techniques employed for improvement of cultivated grasses especially sugarcane might be used for non-cultivated grasses as well. Our hypothesis behind suggesting sugarcane as a model crop for genetic improvement of non-cultivated grasses is the intricacy of gene editing owing to polyploidy and aneuploidy compared to other cultivated grasses (rice, wheat, barley, maize, etc.). Another reason is that genome editing protocols in sugarcane (x = 10-13) have been developed and optimized, taking into consideration the high level of genetic redundancy. Thus, as per our knowledge, this review is the first study that objectively evaluates the concept and functioning of the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 technique in sugarcane regarding high versatility, target specificity, efficiency, design simplicity, and multiplexing capacity in order to explore novel research perspectives for gene editing of non-cultivated grasses against biotic and abiotic stresses. Additionally, pronounced challenges confronting sugarcane gene editing have resulted in the development of different variants (Cas9, Cas12a, Cas12b, and SpRY) of the CRISPR tool, whose technicalities have also been critically assessed. Moreover, different limitations of this technique that could emerge during gene editing of non-cultivated grass species have also been highlighted.

13.
Molecules ; 29(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611848

RESUMO

Sugar industries generate substantial quantities of waste biomass after the extraction of sugar water from sugarcane stems, while biomass-derived porous carbon has currently received huge research attention for its sustainable application in energy storage systems. Hence, we have investigated waste sugarcane bagasse (WSB) as a cheap and potential source of porous carbon for supercapacitors. The electrochemical capacitive performance of WSB-derived carbon was further enhanced through hybridization with silicon dioxide (SiO2) as a cost-effective pseudocapacitance material. Porous WSB-C/SiO2 nanocomposites were prepared via the in situ pyrolysis of tetraethyl orthosilicate (TEOS)-modified WSB biomass. The morphological analysis confirms the pyrolytic growth of SiO2 nanospheres on WSB-C. The electrochemical performance of WSB-C/SiO2 nanocomposites was optimized by varying the SiO2 content, using two different electrolytes. The capacitance of activated WSB-C was remarkably enhanced upon hybridization with SiO2, while the nanocomposite electrode demonstrated superior specific capacitance in 6 M KOH electrolyte compared to neutral Na2SO4 electrolyte. A maximum specific capacitance of 362.3 F/g at 0.25 A/g was achieved for the WSB-C/SiO2 105 nanocomposite. The capacitance retention was slightly lower in nanocomposite electrodes (91.7-86.9%) than in pure WSB-C (97.4%) but still satisfactory. A symmetric WSB-C/SiO2 105//WSB-C/SiO2 105 supercapacitor was fabricated and achieved an energy density of 50.3 Wh kg-1 at a power density of 250 W kg-1, which is substantially higher than the WSB-C//WSB-C supercapacitor (22.1 Wh kg-1).

14.
Front Plant Sci ; 15: 1375934, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525140

RESUMO

Sugarcane is the most important sugar and energy crop in the world. During sugarcane breeding, technology is the requirement and methods are the means. As we know, seed is the cornerstone of the development of the sugarcane industry. Over the past century, with the advancement of technology and the expansion of methods, sugarcane breeding has continued to improve, and sugarcane production has realized a leaping growth, providing a large amount of essential sugar and clean energy for the long-term mankind development, especially in the face of the future threats of world population explosion, reduction of available arable land, and various biotic and abiotic stresses. Moreover, due to narrow genetic foundation, serious varietal degradation, lack of breakthrough varieties, as well as long breeding cycle and low probability of gene polymerization, it is particularly important to realize the leapfrog development of sugarcane breeding by seizing the opportunity for the emerging Breeding 4.0, and making full use of modern biotechnology including but not limited to whole genome selection, transgene, gene editing, and synthetic biology, combined with information technology such as remote sensing and deep learning. In view of this, we focus on sugarcane breeding from the perspective of technology and methods, reviewing the main history, pointing out the current status and challenges, and providing a reasonable outlook on the prospects of smart breeding.

15.
Pak J Biol Sci ; 27(2): 90-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38516750

RESUMO

<b>Background and Objective:</b> Vaname shrimp (<i>Litopenaeus vannamei</i>) is one of the main economic commodities in aquaculture in the world. Biofloc is a cultivation technology that effectively improves the growth and health status of vaname shrimp. This research aimed to analyze the use of bagasse as a carbon source in the biofloc system for white shrimp cultivation. <b>Materials and Methods:</b> The shrimp used were 18 g/individual shrimp obtained from the Bone Marine and Fisheries Polytechnic Pond. Sugarcane bagasse processed from sugar factory waste was dried in an oven at 60°C and ground using a flouring machine. The research treatments included biofloc application where sugarcane bagasse played a role as a carbon source (L), biofloc application where wheat flour's role was as a carbon source (T) and control or no biofloc application (K). <b>Results:</b> This research showed that sugarcane bagasse could be used as a carbon source for white shrimp biofloc cultivation where the growth value tended to be the same as wheat flour. Total hemolytic count (THC) and shrimp survival in sugarcane bagasse biofloc were as good as wheat flour biofloc. Sugarcane bagasse biofloc had the same ability as wheat flour biofloc in reducing ammonia levels in the rearing media. Sugarcane bagasse biofloc had the same ability as wheat flour biofloc in reducing ammonia levels in the rearing media. The application of bagasse had no effect on temperature, pH, dissolved oxygen and salinity of the rearing media because this treatment was in the optimal range for the growth of vaname shrimp. <b>Conclusion:</b> Sugarcane bagasse has the potential to be a carbon source in biofloc systems because it could improve growth, health status, survival and water quality.


Assuntos
Penaeidae , Saccharum , Animais , Celulose , Carbono , Amônia , Farinha , Triticum , Aquicultura
16.
Front Plant Sci ; 15: 1326917, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516657

RESUMO

Introduction: Endophytes play a significant role in regulating plant root development and facilitating nutrient solubilization and transportation. This association could improve plant growth. The present study has uncovered a distinct phenotype, which we refer to as "white root", arising from the intricate interactions between endophytic fungi and bacteria with the roots in a sugarcane and bamboo fungus (Dictyophora indusiata) intercropping system. Methods: We investigated the mechanisms underlying the formation of this "white root" phenotype and its impact on sugarcane yield and metabolism by metabarcoding and metabolome analysis. Results and Discussion: Initial analysis revealed that intercropping with D. indusiata increased sugarcane yield by enhancing the number of viable tillers compared with bagasse and no input control. Metabarcoding based on second-generation and third-generation sequencing indicated that D. indusiate and Bacillus aryabhattai dominates the fungal and bacterial composition in the "white root" phenotype of sugarcane root. The coexistence of D. indusiata and B. aryabhattai as endophytes induced plant growth-promoting metabolites in the sugarcane root system, such as lysoPC 18:1 and dihydrobenzofuran, probably contributing to increased sugarcane yield. Furthermore, the association also enhanced the metabolism of compounds, such as naringenin-7-O-glucoside (Prunin), naringenin-7-O-neohesperidoside (Naringin)*, hesperetin-7-O-neohesperidoside (Neohesperidin), epicatechin, and aromadendrin (Dihydrokaempferol), involved in flavonoid metabolism during the formation of the endophytic phenotype in the sugarcane root system. These observations suggest that the "white root" phenotype promotes sugarcane growth by activating flavonoid metabolism. This study reports an interesting phenomenon where D. indusiata, coordinate with the specific bacteria invade, forms a "white root" phenotype with sugarcane root. The study also provides new insights into using D. indusiata as a soil inoculant for promoting sugarcane growth and proposes a new approach for improve sugarcane cultivation.

17.
Sci Rep ; 14(1): 6716, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509345

RESUMO

Cement is the most widely used construction material due to its strength and affordability, but its production is energy intensive. Thus, the need to replace cement with widely available waste material such as incinerated black filter cake (IBFC) in order to reduce energy consumption and the associated CO2 emissions. However, because IBFC is a newly discovered cement replacement material, several parameters affecting the mechanical properties of IBFC-cement composite have not been thoroughly investigated yet. Thus, this work aims to investigate the impact of IBFC as a cement replacement and the addition of the calcifying bacterium Lysinibacillus sp. WH on the mechanical and self-healing properties of IBFC cement pastes. The properties of the IBFC-cement pastes were assessed by determining compressive strength, permeable void, water absorption, cement hydration product, and self-healing property. Increases in IBFC replacement reduced the durability of the cement pastes. The addition of the strain WH to IBFC cement pastes, resulting in biocement, increased the strength of the IBFC-cement composite. A 20% IBFC cement-replacement was determined to be the ideal ratio for producing biocement in this study, with a lower void percentage and water absorption value. Adding strain WH decreases pore sizes, densifies the matrix in ≤ 20% IBFC biocement, and enhances the formation of calcium silicate hydrate (C-S-H) and AFm ettringite phases. Biogenic CaCO3 and C-S-H significantly increase IBFC composite strength, especially at ≤ 20% IBFC replacement. Moreover, IBFC-cement composites with strain WH exhibit self-healing properties, with bacteria precipitating CaCO3 crystals to bridge cracks within two weeks. Overall, this work provides an approach to produce a "green/sustainable" cement using biologically enabled self-healing characteristics.


Assuntos
Saccharum , Silicatos , Compostos de Cálcio , Cimentos Ósseos , Bactérias , Água
18.
Chemosphere ; 355: 141748, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521109

RESUMO

Sugarcane bagasse is one of the most common Vietnamese agricultural waste, which possesses a large percentage of cellulose, making it an abundant and environmentally friendly source for the fabrication of cellulose carbon aerogel. Herein, waste sugarcane bagasse was used to synthesize cellulose aerogel using different crosslinking agents such as urea, polyvinyl alcohol (PVA) and sodium alginate (SA). The 3D porous network of cellulose aerogels was constructed by intermolecular hydrogen bonding, which was confirmed by Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and nitrogen adsorption/desorption. Among the three cellulose aerogel samples, cellulose - SA aerogel (SB-CA-SA) has low density of 0.04 g m-3 and high porosity of 97.38%, leading to high surface area of 497.9 m2 g-1 with 55.67% micropores of activated carbon aerogel (SB-ACCA-SA). The salt adsorption capacity was high (17.87 mg g-1), which can be further enhanced to 31.40 mg g-1 with the addition of CNT. Moreover, the desalination process using the SB-ACCA-SA-CNT electrode was stable even after 50 cycles. The results show the great combination of cellulose from waste sugarcane bagasse with sodium alginate and carbon nanotubes in the fabrication of carbon materials as the CDI-utilized electrodes with high desalination capability and good durability.


Assuntos
Nanotubos de Carbono , Saccharum , Celulose/química , Saccharum/química , Alginatos
19.
Plants (Basel) ; 13(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38475434

RESUMO

Sugarcane is a globally significant crop for sugar and energy production, and developing high light-efficiency sugarcane varieties is crucial for enhancing yield and quality. However, limited research is available on the screening of sugarcane germplasm with high photosynthetic efficiency, especially with different leaf positions. The present study, conducted in Guangxi, China, aimed to analyze the photosynthetic characteristics of 258 sugarcane varieties at different leaf positions over three consecutive years in field experiments. The results showed significant differences in photosynthetic characteristics among genotypes, years, and leaf positions. Heritability estimates for various photosynthetic parameters ranged from 0.76 to 0.88. Principal component analysis revealed that the first three principal components accounted for over 99% of the cumulative variance. The first component represented photosynthetic efficiency and light utilization, the second focused on electron transfer and reaction center status, and the third was associated with chlorophyll content. Cluster and discriminant analysis classified sugarcane genotypes into three categories: high photosynthetic efficiency (HPE) with 86 genotypes, medium photosynthetic efficiency (MPE) with 60 genotypes, and low photosynthetic efficiency (LPE) with 112 genotypes. Multi-year trials confirmed that HPE sugarcane genotypes had higher single-stem weight and sucrose content. This study provides valuable insights into the photosynthetic physiological characteristics of different sugarcane varieties, which can contribute to further research regarding high yields and sugar breeding.

20.
Data Brief ; 53: 110268, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533124

RESUMO

Sugarcane, a vital crop for the global sugar industry, is susceptible to various diseases that significantly impact its yield and quality. Accurate and timely disease detection is crucial for effective management and prevention strategies. We persent the "Sugarcane Leaf Dataset" consisting of 6748 high-resolution leaf images classified into nine disease categories, a healthy leaves category, and a dried leaves category. The dataset covers diseases such as smut, yellow leaf disease, pokkah boeng, mosale, grassy shoot, brown spot, brown rust, banded cholorsis, and sett rot. The dataset's potential for reuse is significant. The provided dataset serves as a valuable resource for researchers and practitioners interested in developing machine learning algorithms for disease detection and classification in sugarcane leaves. By leveraging this dataset, various machine learning techniques can be applied, including deep learning, feature extraction, and pattern recognition, to enhance the accuracy and efficiency of automated sugarcane disease identification systems. The open availability of this dataset encourages collaboration within the scientific community, expediting research on disease control strategies and improving sugarcane production. By leveraging the "Sugarcane Leaf Dataset," we can advance disease detection, monitoring, and management in sugarcane cultivation, leading to enhanced agricultural practices and higher crop yields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...